Archives

  • 2019-06
  • 2018-12
  • 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2020-03
  • 2020-08
  • 2021-03
  • br Acknowledgments br This work was supported in part by

    2019-10-08


    Acknowledgments
    This work was supported in part by the Natural Science Foundation of Shanxi Province (Grants No:
    References
    1. Perou C M, Jeffrey S S, Van d R M, et al. Distinctive gene expression patterns in human mammary epithelial KIN59 and breast cancers[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(16):9212-9217. 2. Golub T R, Slonim D K, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, 1999, 286 (5439) : 531–537. 3. Labani M, Moradi P, Ahmadizar F, et al. A novel multivariate filter method for feature selection in text classification problems[J]. Engineering Applications of Artificial Intelligence, 2018, 70:25-37. 4. Kira K, Rendell L A. A practical approach to feature selection[C]// International Workshop on Machine Learning. Morgan Kaufmann Publishers Inc. 1992:249-256. 5. Kononenko I, Estimating attributes: analysis and extension of relief, in: Proceedings of the Seventh European Conference in Machine Learning, Springer-Verlag, 1994: 171–182. 6. Robnik, Ikonja M, Kononenko I. Theoretical and Empirical Analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1-2):23-69.
    12. Nagpal S, Arora S, Dey S, et al. Feature Selection using Gravitational Search Algorithm for Biomedical Data[J]. Procedia Computer Science, 2017, 115:258-265. 13. Han X H, Chang X M, Quan L, et al. Feature subset selection by gravitational search algorithm optimization[J]. Information Sciences, 2014, 281:128-146. 14. Xiang J, Han X H, Duan F, et al. A novel hybrid system for feature selection based on an improved gravitational search algorithm and k-NN method[J]. Applied Soft Computing, 2015, 31(C):293-307. 15. Bababdani B M, Mousavi M. Gravitational search algorithm: A new feature selection method for QSAR study of anticancer potency of imidazo[4,5-b]pyridine derivatives[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 122(5):1-11.
    21. Prasad Y, Biswas K K, Hanmandlu M. A Recursive PSO scheme for Gene Selection in Microarray Data[J]. Applied Soft Computing, 2018.
    23. Shen Q, Shi W M, Kong W. Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data[J]. Computational Biology & Chemistry, 2008, 32(1):53-60. 24. Zhang H, Wang H, Dai Z, et al. Improving accuracy for cancer classification with a new algorithm for genes selection[J]. BMC Bioinformatics, 2012, 13(1):1-20. 25. Kira K, Rendell L A. The feature selection problem: traditional methods and a new algorithm[C]// Tenth National Conference on Artificial Intelligence. AAAI Press, 1992:129-134.
    26.Tan M, Wang L, Tsang I W. Learning sparse SVM for feature selection on very high dimensional datasets[C]// International Conference on International Conference on Machine Learning. Omnipress, 2010:1047-1054.
    27. Ghosh S, Mitra S, Dattagupta R. Fuzzy clustering with biological knowledge for gene selection[M]. Elsevier Science Publishers B. V. 2014. European Journal of Surgical Oncology xxx (xxxx) xxx
    Contents lists available at ScienceDirect
    European Journal of Surgical Oncology
    A long-term retrospective comparative study of the oncological outcomes of 598 very young ( 35 years) and young (36e45 years) breast cancer patients
    a
    d
    a
    Andras Szollar
    , Mihaly Újhelyi
    , Csaba Polgar , Edit Olah , David Pukancsik ,
    e
    f
    g
    a
    h, i Gabor Rubovszky
    , Nora Udvarhelyi , Tibor Kovacs , Akos Savolt , Istvan Kenessey ,
    a
    Zoltan Matrai
    a National Institute of Oncology, Department of Breast and Sarcoma Surgery, Rath Gyorgy€ Str. 7-9. 1122, Budapest, Hungary